Accurate sets of solitary solutions for the quadratic–cubic fractional nonlinear Schrödinger equation
نویسندگان
چکیده
منابع مشابه
Evolution of solitary waves for a perturbed nonlinear Schrödinger equation
Soliton perturbation theory is used to determine the evolution of a solitary wave described by a perturbed nonlinear Schrödinger equation. Perturbation terms, which model wide classes of physically relevant perturbations, are considered. An analytical solution is found for the first-order correction of the evolving solitary wave. This solution for the solitary wave tail is in integral form and ...
متن کاملAnalytical solutions for the fractional Fisher's equation
In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...
متن کاملAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملMulti-speed solitary wave solutions for nonlinear Schrödinger systems
Abstract. We prove the existence of a new type of solutions to a nonlinear Schrödinger system. These solutions, which we callmulti-speeds solitary waves, are behaving at large time as a couple of scalar solitary waves traveling at different speeds. The proof relies on the construction of approximations of the multi-speeds solitary waves by solving the system backwards in time and using energy m...
متن کاملAccurate numerical solutions of the time-dependent Schrödinger equation.
We present a generalization of the often-used Crank-Nicolson (CN) method of obtaining numerical solutions of the time-dependent Schrödinger equation. The generalization yields numerical solutions accurate to order (Deltax)2r-1 in space and (Deltat)2M in time for any positive integers r and M, while CN employ r=M=1. We note dramatic improvement in the attainable precision (circa ten or greater o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2021
ISSN: 2158-3226
DOI: 10.1063/5.0050624